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Pumping by means of an infinite train of peristaltic waves is investigated under 
conditions for which the relevant Reynolds number is small enough for inertial 
effects to be negligible and the wavelength to diameter ratio is large enough for the 
pressure to be considered uniform over the cross-section. Theoretical results are 
presented for both plane and axisymmetric geometries, and for amplitude ratios 
ranging from zero to full occlusion. For a given amplitude ratio, the theoretical 
pressure rise per wavelength decreases linearly with increasing time-mean flow. 
An experiment with a quasi-two-dimensional apparatus confirmed the theoretical 
values. 

Calculations of the detailed fluid motions reveal that under many conditions 
of operation the net time-mean flow is the algebraic difference between a forward 
time-mean flow in the core of the tube and a backward (‘reflux’) time-mean 
flow near the periphery. The percentage of reflux flow can be very high. This 
reflux phenomenon is probably of physiologic significance in the functioning 
of the ureter and the gastro-intestinal system. A second fluid-mechanical peculi- 
arity with physiological implications is that of ‘trapping’: under certain con- 
ditions aninternally circulating bolus of fluid, lying about the axis, is transported 
with the wave speed as though it were trapped by the wave. 

1.1. Object and scope 1. Introduction 

This paper is concerned with the fluid mechanics of peristaltic pumping under 
conditions for which (i) the length of the peristaltic wave is large compared with 
the channel width, and (ii) the appropriate Reynolds number is sufficiently small 
for the flow to be considered inertia-free. These conditions appear to be reasonably 
well met in the human ureter and, to a lesser extent, in the gastro-intestinal tract 
and in mechanical roller pumps using viscous fluids. 

In § 3, the gross pumping characteristics of an infinite wave-train are developed 
for the two-dimensional plane and axisymmetric cases. A comparison of the 
theory with an approximately two-dimensional plane experiment is given in 3 4. 
In  $35 and 6, the details of the fluid motions are studied for plane and axi- 
symmetric flow, respectively. Two surprising phenomena are discovered, de- 
scribed here as reflux and trapping. 



800 A .  H .  Shapiro, M .  Y .  Jaffrin and S. L. Weinberg 

1.2. An elementary view of how a peristaltic pump works 

Figure 1 gives a simple physical picture of how a peristaltic pump works; it also 
suggests conclusions that are correct more generally. 

The upper drawing (laboratory frame) shows a long tube closed a t  both ends, 
in which a peristaltic wave of contraction is produced by moving a sliding cuff 
to the right a t  speed c. Because of the closures at the two ends, there is no flow 
in either large cross-section. I n  the wave frame of reference (lower drawing), 
which moves rightwards with the speed c relative to the laboratory frame, the 
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FIGURE 1. Schematic to illustrate mechanism of peristaltic pumping. (a)  As seen in 
laboratory frame (unstmdy). (6) As seen in wave frame (steady). 

wave-form appears stationary. Also, the walls move leftwards with the speed c ,  
and there is a uniform plug flow to the left, of speed - c, in the large cross-sections. 
To conserve volume flow of an incompressible fluid, the average leftwards velocity 
in the contracted section must exceed c. Assuming for the moment that the flow 
is viscous and inertia-free, the velocity profile in the contracted section must be 
parabolic, with velocity - c  a t  the walls. There is no pressure gradient in the 
large cross-sections, but the pressure falls from right to left in the contracted 
section, owing to viscous losses. 

This same pressure gradient exists in the laboratory frame. Thus the peristaltic 
wave tends to produce a rising pressure in the direction of the wave. I n  the labora- 
tory frame, the longitudinal velocity distribution in the contracted section is 
a leftwards Poiseuille flow, with zero longitudinal speed a t  the walls. 

If the closures are removed, there will be an additional flow, the amount 
depending on the end pressures imposed. During operation as a pump, fluid will 
be transported rightward through the larger sections, and the leftward flow in 
the contracted section will be reduced, as compared with the closed-end case. 
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The associated Poiseuille viscous losses will reduce the pressure rise produced 
by the peristaltic motion. 

Two conclusions, applicable to more general wave-forms, can be drawn from 
the foregoing arguments. (i) Dissipation is an essential feature of peristaltic 
pumping. Without viscous effects, the flow in the contracted section would be 
a plug flow and would have no associated pressure drop. Alternatively, Bernoulli’s 
integral, when applied to an assumed steady-state inviscid flow observed in the 
wave frame, would show no net pressure change across the contraction wave. 
(ii) As seen in the laboratory frame, the usual condition in a peristaltic wave is 
that the fluid in contracted sections moves opposite to the wave direction, and 
the fluid in enlarged sections moves in the same direction as the wave. 

1.3. Related work 

For infinite wave-train, the dimensionless parameters of the problem are: (a) a 
wave-number, a/h, where a is the mean half-width of the passage (plane geometry) 
or the mean radius (axisymmetric geometry), and h is the wavelength; (b) an 
amplitude ratio, $ = b/a, where b is the half-amplitude of a peristaltic wave; 
(c) a Reynolds number, R, which we show later best measures small inertia effects 
when defined as R E (aclv). (a /A ) ;  ( d )  a dimensionless time-mean flow, e.g. 
8 = &/bc for the plane case, where 0 is the time-mean flow observed in the 
laboratory frame. For fixed values of the first three, the fourth may have any 
value, depending upon the pressure rise against which the pump works. 

Table 1 summarizes the assumptions in the theoretical investigations of 
Burns & Parkes (1967), of Hanin (1968) and of Fung & Yih (1969), compared 
with the assumptions of the present paper. All deal with an infinite train of 
sinusoidal waves. Burns & Parkes develop their solution as an expansion in 
ascending powers of 4. Explicit algebraic results do not emerge, and numerical 
calculations are necessary. In  some examples, these are carried to order 44. 

Geometry 

Burns & Fung & Present 
Parkes Hanin Yih paper 

Plane Plane Plane Plane 
axisym. axisym. 

Reynolds number, R Zero Arbitrary Arbitrary Zero 

Wave-number, aJh Arbitrary Zero Arbitrary Zero 

Amplitude ratio, q5 Small? Smallt Small? Arbitrary 

t Solution is expressed in ascending powers of ~. 
TABLE 1 

Hanin’s solution is restricted by the additional assumption that the mean pressure 
gradient is zero. This is equivalent to restricting B to a single value for each value 
of$. Hanin’s solution is also expressed as an expansion in ascending powers of 4. 
He gives some explicit results valid to first-order in $ for the oscillatory flow and 
to second-order for the mean flow. Fung & Yih, also using an expansion in ascend- 
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ing powers of $, give results up to order $2. The present solution is limited to 
small R (inertia-free case), and to small a/h (large A) .  On the other hand, $ is 
arbitrary, and many important results are given in closed form. 

1.4. Physiologic data for the ureter 

The geometric and kinematic properties of the ureter are not well established. 
They vary greatly among individuals, and from time to time (see Boyarsky 
1964; Campbell 1963; Kiil 1957; Maksimov & Bloom 1957; Narath 1951). 
Although we have insufficient knowledge of the minimum cross-sectional shape 
and dimensions during peristalsis, enough seems to be known to set the context 
of a fluid-dynamic analysis. Table 2 shows the ranges of the variables for the 
human ureter. The cross-sectional shape varies from nearly round, when fully 
distended, to roughly star-shaped, with flat quasi-two-dimensional lobes, when 
contracted. 

Length 30 cm 
Inside diameter 
Wave speed 
Frequency several waves per minute 
Wavelength 

from 0.01 cm (in doubt) to 0.5 cm (extreme !) 
from 1 cm/s to 6 cm/s 

from 1 em to 15 cm 

TABLE 2 

In  the theoretical model defined below, the purpose is not to represent exactly 
the functioning of the ureter, but rather to explore in as simple a way as possible 
the fluid-mechanical phenomena inherent in peristalsis. Presumably the results 
of the simple model have some relevance to ureter function. 

2.5. Theoretical model 

The rationalization of the theoretical model given below is based on order-of- 
magnitude physical analysis. In  appendices A and B, the implications of the 
assumptions regarding alh and R are more clearly and fully developed by 
normalization and order-of-magnitude analysis of the differential equations. 

(i) InJinite wavelength. The ratio of width t o  wavelength is assumed to be 
small, i.e. alh < 1. If, for the ureter, we take a g 0.1 and h g 5cm, then 
a/h  z 1/50. Thus the slope of the wall is very small, and it may be shown that 
the transverse velocities and pressure gradients are small compared with the 
longitudinal values. This simplifies the solution, because one may assume that 
the pressure is instantaneously uniform over each cross-section. 

(ii) Inertia-free$ow. We are interested in the case where the peristaltic wave 
acts as a pump, i.e. it produces a pressure rise in the direction of the mean flow. 
As shown later, under these conditions the longitudinal velocity as observed in 
the wave frame is of order c. Thus the leading viscous term in the equation of 
motion, paZulay2, is of order ,uc/aZ, at least when viscous effects are strong and 
not confined to  thin boundary layers, where x, y are co-ordinates in the wave 
frame, u, v are the velocity components, and ,u is viscosity. Since au/az is of order 
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CIA,  the typical inertia term pzcaujax is of order pc2/h, for density p .  Thus the ratio 
of inertial to viscous forces is of order (calv) (./A), where u is the kinematic 
viscosity. This is the appropriate R for cases with small inertial effects, as con- 
firmed in appendices A and B. In  the model we assume that R is so small that 
the inertia terms in the equation of motion may be ignored. 

3 cm/s, a 2 0.1 cm, v z 0.007 cmZ/s and 
h 2 5 cm, then R r 1. This is so small that one may apply an inertia-free theory; 
indeed, as shown in 3 3.2, the inertia-free theory should be quite accurate. The 
assumptions of infinite wavelength and inertia-free flow, taken together, are 
equivalent to  the assumption that the flow is instantaneously of Poiseuille type 
a t  each local cross-section. 

(iii) InJinite sinusoidal wave-train. There is an infinite progressive train of 
sinusoidal waves, with the wall co-ordinate following the law 

If, for the human ureter, we take c 

H = l+#s in2n([ -~) ,  (1) 

where H is a dimensionless wall co-ordinate, h/a, h the lateral co-ordinate of the 
wall, [ a dimensionless transverse co-ordinate, Xlh,  X and Y co-ordinates in 
the laboratory frame, and 7 a dimensionless time, ct/A. The wall itself, however, 
moves in a purely transverse direction. If the number of waves between the inlet 
and discharge reservoirs of the pump is finite but integral, the solution for the 
infinite wave-train remains valid. Presumably most of the important phenomena 
in peristaltic pumping are not sensitive to the shape of the wave. 

(iv) Fluid properties. The density and viscosity are assumed constant. 

2. Gross pumping performance 
2.1. Theory for plane two-dimensional geometry 

Figure 2 shows the nomenclature used for an infinite sinusoidal wave-train, 
as observed (upper) in the laboratory frame and (lower) in the wave frame. 
The transformations between the two frames are 

x = X-c t ,  y = Y ,  ( 2 )  

(3) and 

for velocity components in the laboratory frame, U and V .  
Wave frame. It can be shown that, if the tube length is finite but equal to an 

integral number of wavelengths, and if the pressure difference between the ends 
of the tube is constant, the flow is steady in the wave frame. For simplicity, we 
assume that these conditions are met, and we solve the problem in the wave frame. 
With the assumptions of infinite wavelength and inertia-free flow, the Navier- 
Stokes equation in the y-direction reduces to 

u(x ,  y )  = U ( X  - ct, Y )  - c, v(x, y) = V ( X  - ct, Y ) ,  

aplay = 0, (4) 

and in the x-direction it becomes 

( 5 )  
51-2 
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for pressure p .  Since dp/dx depends upon x but not y, (5) may be integrated 
twice with respect to y. Using the boundary conditions that 

aulay = 0 at y = 0, u = - C  at y = h, 

we get a parabolic velocity profile showing the local flow to be of Poiseuille type: 

- U - a2 " [ ( ; ) 2 - ( ~ ) 2 ] .  
c 2pc ax 

_ -  I 'ti--- 
n 

x = X-cr 
y = J' 

u ( x , y )  = U(X-cr,  Y)-c  
u ( x , y )  = V(X-cr, Y )  

(a) 

IC 

q = const. 

( b )  

FIGURE 2. Nomenclature for infinite progressive train of sine waves. 
(a) Laboratory frame. (b)  Wave frame. 

The rate of volume flow through each sect.ion, q, is a constant, independent 
of both x and t. It is calculated as 

with (6), this gives 

Laboratory frame. The instantaneous volume flow rate, Q ( X , t ) ,  is found by 
integrating Ph 

where Q is instantaneous, local flow observed in the laboratory frame. From (3), 
U = u + c; and the integration leads to 
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Considering the peristaltic device as a pump, the quantity of practical interest 
is the time-mean volume flow at each cross-section, &, which measures the mean 
discharge rate. Using ( lo) ,  Q is calculated by integrating over the period, T: 

The integral, which is to be evaluated with X constant, is found for the sinusoidal 
wave of ( 1 )  to have the value ah/c. Hence 

Q = q+ac, (11) 
which has an obvious physical interpretation. 

The pressure rise per wavelength is 

Inserting the value of dp/dx given by (8), substituting h from (1) and q from (1  1))  
and introducing dimensionless variables, ( 12) finally yields 

The denominator of the dimensionless time-mean flow, 8 = Q/bc,  would 
represent the volume flow rate, if all the material between y = a-b and 
y = a + b were convected rightwards, like a solid, at speed c. It might be thought 
of as the ‘piston displacement’ of the pump. For complete occlusion, 8 = 1. 

Pressure-flow characteristic. As required by the linear nature of the case R = 0, 
the curve of ApA us. 8 is a straight line with negative slope, e.g. figure 7. The 
relationship between Ap,, and 8 for a fixed value of $ may therefore be expressed 
conveniently by means of the two intercepts: the dimensionless pressure rise 
( A P ~ ) ~ = ~ ,  for zero time-mean flow, and the dimensionless time-mean flow, O,, for 
zero pressure rise. These are given by 

3$ 8, = --z. 
2 + $  

Equations (14)  and (15) are plotted in figure 3 over the whole possible range, 
$ = 0 (no peristalsis) to q5 = 1 (complete occlusion). 

For q4 < 1, Oo increases linearly with $, while (ApA),+, increases as $2. As $ --f 1, 
8, -+ 1, since all the fluid contained in one wavelength must be transported at  
speed c. Moreover, ( A P ~ ) ~ = ~  -+ 00. Thus the volume flow is independent of the 
pressure rise, which is the characteristic of a positive-displacement pump. The 
peristaltic waveserves as a pump in the range where the mean flowis in thedirec- 
tion of the pressure rise, i.e. when 0 < 8 < B0. 

Mechanical eficiency. The definition of pumping efficiency consistent with 
that commonly used for pumping machinery is 
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The numerator represents the rate at which useful energy is stored in the fluid, 
reckoned per wavelength and averaged over the period. The denominator is the 
rate at which mechanical work is delivered to the wall from outside agencies, 
again per wavelength and averaged over the period. 

10 

0 8  

3 6  

0, 

0 4  

0.2 

n 1 

0 0.2 0.4 0.6 0.8 

9 
FIGURE 3. Plane case. ~ , dimensionless flow 8, for zero pressure rise, and dimension- 
less pressure rise for zero flow, both as functions of amplitude ratio 9;  - - --, effect of 
finite wavelength on 8, (based on Burns & Parkes 1967). 

For a/h < 1, the contribution of the wall-shear term to the mechanical-work 
integral is negligible compared with that of the pressure term. Neglecting the 
former, and using (l), (8) and (13) to evaluate the integral of (16), one obtains 

We might alternatively define an efficiency, E‘, as 

E’ = 1 - ( D / w ) ,  

where is the denominator of (16) and D is the rate of viscous dissipation, given 

On detailed calculation, E’ turns out to be identical with E as given by (17). This 
shows that the definition used for E properly allocates the mechanical work 
input into the two components of viscous dissipation and useful energy storage. 

The solid curves of figure 4 show E plotted against 8/O0 for several values of q5. 
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Where E is important, it is clear that $ is large; in that case quite respectable 
efficiencies are achievable, but over only a relatively narrow range of flows. 

At the limit $ = 1, either (i) 0 = B,, and ApA is indeterminate, or (ii) Aph = 00, 

and BIB, < 1, but indeterminate. Of these two possibilities, only the first is of 
practical interest, since the latter involves i n h i t e  velocities through the occluded 
zone. For O/8, = 1, the efficiency is indeterminate, because the viscous dissipa- 
tion is constant, while the useful mechanical energy stored in the fluid ranges 
from 0 to co. Accordingly, for $ = 1, E ranges from 0, for ApA = 0, to 1, as 
ApA -+ 00. 

FIGURE 4. Pumping efficiency 'us. dimensionless flow, O/O, or @/Go. -, 
plane, two-dimensional case. - - - - , axisymmetric case. 

2.2. Comparison of results for plane case with other theories 

On figure 3 the dashed curves show the values of 8, as computed up to order $4 in 
amplitude by Burns & Parkes (1967), for the inertia-free case with arbitrary 
wavelength. The limiting solution for infinite wavelength (solid curve, alh = 0 )  
is very good up to a/h = 1 1 2 ~ .  For a/h = l/n, the solution for infinite wavelength 
underestimates the mean flow by about 113, a t  least up to $ = 0.2. 

Hanin (1968) gives a formula for O,, which takes into account inertial forces, 
but which is limited to infinite wavelength and is valid up to terms of order $2 

in the amplitude 

In  the inertia-free limit, this reduces to 3$/2 ,  which agrees with (15) when $ is 
small. Moreover, the second term in the square brackets shows that the effect 
of inertia is less than 1 %, if R < 1. Since the typical value of R for the human 
ureter is about 1 ( 5  2.4), it appears that the inertia-free solution is actually quite 
accurate physiologically, at least when $ is not too large. 

The two-dimensional solution of 5 3.2, when taken to the limit of small $, is 
identical with that of Fung & Yih, when the latter is taken to the limit of small R .  

8, = &h[l- 0*0083R2]. 
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2.3. Theory for axisymmetric geometry 

The nomenclature is as in figure 2, except that the transverse co-ordinates are 
R and r rather than Y and y ,  respectively, while a represents the mean radius. 
The co-ordinate transformation is r = R. 

Wave frame. With the assumptions of infinite wavelength and iliert,ia-free 
flow, the Navier-Stokes equations have the approximate form 

Since dpldx is a function of x only, (18) may be integrated twice with respect to r.  
Using the boundary conditions that 

aufar = 0 at r = 0, u =  - c  a t  r = h, 

the parabolic profile of a local Poiseuille flow is obtained once more: 

The constant flow through the tube, 

is now calculable, with (19) as 

Laboratory frame. Noting that 

Q = / rnUd(R2) ,  

and using the transformation formulas, we get 

Q = q+nh2c. 

Thus the time-mean volume flow over a period is 

Integrating for the sinusoidal wall of (1)) we get 

= (29-&5”)0-(l+gq5”, ( 2 5 )  

where 

is the dimensionless time-mean volume flow rate. The denominator of this expres- 
sion is the flow that would be transported if all the material in the tube between 
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the radii (a-b)  and (a+b) were convected rightwards, like a solid body, with 
speed c .  Again, this denominator is a 'piston displacement' for the problem, 
and 0 = 1 when $ = I .  

Solving for dp/dx from (21), and substituting into (12), we get 

9 
FIGURE 5 .  Axisymmetric case. Dimensionless flow 0, for zero pressure rise, and 
dimensionless pressure rise for zero flow, both as functions of amplitude ratio q5. 

The integrals may be evaluated using (1) for h. Then, substituting q from (25), 
the results may be brought into the form 

Pressure-$ow characteristic. Since, as in the plane case, the relation between 
ApA and 0 is linear, we may conveniently characterize the pumping performance 
in terms of ( A P ~ ) ~ = ,  and 0,. These are given by 

They are plotted in figure 5. When # < 1, 0, varies linearly with amplitude, 
while (ApA)+, goes as $2. As q5 -+ 1, properly 0, -+ 1,  and (ApJ0=, + 00. The 
volume flow is constant irrespective of the pressure rise, as in a positive-displace- 
ment pump. 
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Mechanical eficiency. In the axisymmetric case, the denominator of the 
efficiency expression, (16), is replaced by 

in which the contribution of T~ is negligible for long wavelengths, and has been 
ignored accordingly. Evaluation of the integral and rearrangement finally lead to 

The efficiency, as calculated from (31), is shown in figure 4 by dashed lines, with 
results similar to those for the plane case. 

3. A two-dimensional experiment 
A simple quasi-two-dimensional experiment was performed by Latham ( 1966) 

in an apparatus shown schematically in figure 6. The test duct was a flattened 
length of clear, flexible polyvinylchloride tubing with a wall of thickness 0.050 in. 
This was confined, in a 180" arc, between a flexible steel band and a stationary 
backplate formed in a semicircle of 16in. radius, such that the tube became 
approximately rectangular in shape, height 2.5 in., and mean width about 
0.3in. The ends of the test duct, outside the semicircular arc of flattening, were 
connected to open vertical reservoirs, in which the fluid could be maintained at 
constant elevation. The circuit was completed by a control valve, with which 
the pressure rise between reservoirs was adjusted, and a means for measuring 
mean volume flow. On the rotating wheel were mounted 32 pairs of adjustable 
fingers, each of which determined the radial position of a Teflon slider that 
engaged the flexible band. Since the band itself was constrained against rotation, 
the sliding fingers imposed on the band a progressive wave of radial displacement. 
The fingers were adjusted so that there would be an integral number of wave- 
lengths in the active region, approximately sinusoidal in form. 

The wave geometry thus established differs in two ways from the theoretical 
model: (i) the wave is in only one wall, and (ii) the whole duct is curved in a 
semicircle. These are unimportant differences, however, since the half-width 
a = 0.15 in. is small compared with both the wavelength and the radius of the 
semicircle. Thus the long-wavelength theory remains applicable. 

For a fixed wave geometry, the variables that could be adjusted and measured 
were the wave speed c, the pressure rise ApA, and the viscosity p ;  the latter was 
adjusted and measured by using mixtures of either glycerine and water or corn 
syrup and water. For each combination a resulting Q was measured. Through 
the choices of c and p, a very wide range of R was covered, with overlapping 
ranges of R for different fluids. 

Figure 7 shows the experimental results in a case with four wavelengths present 
and with q5 = +. The ordinate is the ratio of the measured ApA to the theoretical 
value given by (14). Bearing in mind (i) that the tube was not exactly two- 
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dimensional and had curved end walls of variable shape, and (ii) that the wave 
was only approximately sinusoidal, the agreement between theory and experi- 
ment is generally good. For about R < 0-2, there is no significant effect of 
Reynolds number within the accuracy of the measurements, as must be true if 
inertia is unimportant. For about R > 0.2, however, there is a distinct reduction 
in pumping performance. The two points for R = 38 show a large loss of pumping 
effectiveness as inertial effects come strongly into play. 

Teflon 

(6 )  

FIGURE 6. Schematic of quasi-two-dimensional experiment 
(Latham 1966) : (a)  plan view, ( b )  section A-A. 

4. Details of fluid motion (plane case) 
4.1. Velocity distributions and the wave frame stream function 

Longitudinal velocity. Using the transformation of (3), and applying ( l ) ,  (8) 
and (11) t o  (B), the longitudinal velocity distribution in the laboratory frame 
may be expressed as 

- - z?Q, [tl+sin2m([-~)] 
U 
c 1+Q,sin2m([-~) 
-. (32) 
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Since Ulc varies parabolically over each cross-section, from zero at the wall to 
a maximum (or minimum) at  the axis of symmetry, we may visualize the longi- 
tudinal velocity distribution merely by examining U/c  at the axis, 7 = 0. From 
(32) it may be shown that (U/C) ,=~ is a maximum when 6 = &, i.e. at  the widest 
part of the channel, and that it is a minimum when 6 = $, i.e. at the narrowest 
part of the channel. The values are respectively 

( ~ / c ) 7 = o , m a x  = 2(1+0)4/(1+4L (33a) 

( U/c)q=O, min = -$(I - 0) #/'(I - 4)-  (33b)  

8 = &jbc 

FIQURE 7. Experimental results for the plane case (Latham 1966). The abscissa is the 
dimensionless time-mean flow. The ordinate is the ratio of the measured pressure rise 
t o  the theoretical rise for zero flow. 

These are plotted in figure 8 for the two limits of the range of 0 in which the 
peristaltic wave acts as a pump. In  this range, the maximum value of U/c  is always 
positive, while the minimum is always negative. The latter may become very 
large at  large 4. 

A sidelight on these results for the infinite sinusoidal wave-train is that they 
agree with the very simple notion of peristaltic pumping described in § 2.2 and 
figure 1. 

Transverse velocity. Prom the continuity equation, we may calculate the trans- 
verse velocity from the integral 
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which, with (32), leads to 

813 

Stream function in the wave frame. In  the laboratory frame the flow is unsteady, 
and the particle path lines, e.g. figure 9, are very different from the streamlines, 
e.g. Burns & Parkes (1967, figure 4). The flow in the wave frame, on the other 

-0 0.2 0.4 0.6 0.8 1.0 

d 
FIGURE 8. Plane case. Maximum and minimum values of U/c  on the axis, 

for the two limits 8 = 0 and 8 = 8,. 

hand, is steady; hence the path lines, streamlines, and streaklines all coincide. 
They are usually similar to the wall shape, but with lesser amplitude as the axis 
is approached, with the exception of certain cases where a region of closed 
streamlines is present, e.g. figure 11. 

The stream function in the wave frame is later put to important use as a 
quantitative marker for identifying material fluid particles in the laboratory 
frame. Defining it as 

= udy -  vdx, 
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and using (8)) (32) and (34) for the velocity distributions, integration leads to 

where $ has been set equal to zero on the axis. Its value at  the wall is 

xW = $8- 1. (36) 

In  appendix B, (35) is obtained alternatively by a solution of the zeroth-order 
approximation to the Navier-Stokes equations expressed in terms of the stream 
function. 

f; 

sine wave; particle orbits for vo = 0-2, 7, = 0.8 at  T = 0 and & = 0. __ , qe,  = 0; 
__ - -  , op,, = I .  

FIGURE 9. Samples of particle trajectories for the plane case, with q5 = +: two-dimensional; 

4.2. .Mean displacement pro$les for material particles 

One manifestation of ‘ureteral reflux ’ is that bacteria sometimes travel from 
the bladder to the kidneys, against the mean urine flow. This happens in a matter 
of hours, much too rapidly to be explained by molecular diffusion, even when 
it is enhanced by bacterial self-propulsion. The phenomenon seems explicable 
through calculations of the net displacement histories of parcels of fluid of 
fixed identity. The trajectories of fluid parcels may clearly be of importance 
also in the functioning of the gastro-intestinal tract, where chemical reactions 
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between the contents and materials at  the walls will be affected by convective 
transport. 

From (32) and figure 8, it is evident that, a t  a fixed cross-section, the fluid 
moves alternately with and against the wave at different phases of the wave's 
passage. This behaviour might influence functioning of the ureter and gastro- 
intestinal tract through a coupling between longitudinal convective transport 
and transverse diffusive transport, leading to an augmentation of net longitudinal 
diffusion. 

However, a more direct and powerful fluid mechanism for redistributing 
materials is potentially present in peristaltic pumping. It might be thought that 
the net displacement of the fluid in the laboratory frame could be related to the 
time-mean longitudinal velocity at each point (the time-mean transverse velocity 
is zero). But in fact the time-mean longitudinal velocity tells very little about 
where the fluid goes; indeed, it is quite possible for the time-mean velocity at  
a fixed point to be negative, while the net displacement of a fluid particle, per 
cycle, is positive. In order to arrive a t  a meaningful result, we must calculate the 
trajectories of material fluid particles by integrating the simultaneous equations 

dtJdr = Ulc, dy/dr  = (V/c)  (hla), (37) 

where U/c  and V/c are each functions of (, 9 and T as given by (32) and (34). 
By observing that the particle trajectories in the wave frame are periodic, it 

can be shown that the particle trajectories in the laboratory frame are repetitive, 
with a characteristic period AT*. This latter is defined as the time interval between 
two successive instants at  which the particle occupies the same position relative 
to the wave. 

Particles on the axis. The integration may be performed analytically for 
particles on the axis, 9 = 0 ,with results that are instructive. In a certain range 
of q5 and I9/S0, a material particle on the axis executes periodic displacements, 
with both positive and negative contributions to the net displacement. Let the 
period of the particle trajectory be AT*, and the corresponding net displacement 
be At*; then, within this range defined by O/O, < (2-  q5)  ( 2 +  q52)/9q52, one can 
show that 

AE* = 3 - 1  9 (38) 
i-+e 

[J[(l-:q5S).- (;)"I ] 
AT* = 1 +A[*. (39) 

Surprisingly, the period AT* of the particle trajectory is not unity (the period 
of the wave). The wave is progressive, and there is a net displacement At*;  thus 
the particle must travel for a time either slightly greater or slightly less than 
one wave period, in order to find itself again in the same position relative to the 
wave. The mean speed of displacement of the particle, averaged over the particle 
period, is 

(40) S = At*/Ar*. 

In  the pumping range, 0 < I9 < 6',, S is positive for all values of q5. It is sur- 
prising that this should be so. When 6' = 0, for instance, particles on the axis 
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make net headway in the direction of the wave, even though Q = 0. But such can 
only be the case if particles at  some distance from the axis make net headway 
in the direction opposite to the wave. The magnitudes of these displacements 
are by no means negligible. When 8 = 0 and $ = 0.8, for instance, S z 0-2; this 
means that in one particle period, in this case about 1-2 wave periods, a fluid 
parcel on the axis moves about 20 % of a wavelength in the direction of the wave. 

Particles not on the axis. Equations (37) are in general not integrable in terms 
of elementary functions, and numerical integrations are therefore necessary. 
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FIGURE 10. Curves of mean speed of advance, S, for material particles, plotted against 
the value of the wave frame stream function identifying the particle. (a) For $ = i, 
(21) for $ = 0.9. 

Figure 9 shows the results for a typical case, with q5 = 4, and for 818, = 0 and 
8/8, = 1. Two starting positions of the particle are shown, one near the axis 
(7, = 0.2 at 6 = 0, r = O), the other near the wall (7, = 0.8 at = 0, r = 0). Each 
trajectory is shown for one period of the particle motion, which is then repetitive. 
For 8 = 0, the particle near the axis experiences in one period a net positive 
displacement of about 0.1 wavelength, and for 8 = 8, about 1.1 wavelengths. 
The particle near the wall experiences a net negative displacement of about 
0.1 wavelength for 8 = 0, and a net positive displacement also of about 0.1 
wavelength for 8 = 8,. 

Rejtux phenomenon. If the profile of mean speed of advance S were displayed 
as a function of lateral position 7, its shape would depend upon the longitudinal 
position 6. A more meaningful plot, free of this ambiguity, is that of figure 10, 
in which the mean speed X of the material particle is plotted against that value 
of the dimensionless stream function x/xw which identifies the material particles 
on the wave frame streamline x. 

In figure 10( a) typical profiles of S vs. x/xw are shown for $ = + and for several 
values of 8/8, between 0 and 1. For values of 8/8, up to about Q ,  the net forward 
flow is seen to be the difference between a forward flow near the axis and a reverse 
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flow near the wall. This reflux phenomenon clearly represents a possible explana- 
tion for the transport of bacteria in the ureter from the bladder to the kidneys in 
a direction opposite to that of the mean discharge. 

Trapping phenomenon. Figure 10 (b)  shows the profiles of S us. xlx, for a larger 
amplitude ratio, 4 = 0.9. The results are similar to those of figure lO(a), except 
for an additional feature. There exist streamlines with negative values of xlx,; 
on all such streamlines, S = 1. The associated fluid has a mean speed of advance 
exactly equal to the wave speed. This fluid is 'trapped' in that it moves, at  
least in the mean, with the wave itself. 

FIGURE 11. Streamlines in wave frame for a combination of amplitude and 
flow such that a trapped bolus exists in the laboratory frame. 

To elucidate this, figure 11 shows schematically the streamlines in the wave 
frame, as determined by (35), for combinations of #J and 8 such that trapping 
occurs. The centre streamline splits, and there is a region of recirculating, closed 
streamlines. This region comprises a bolus of fluid which, in the laboratory frame, 
is trapped with the wave in the sense that it advances as a whole with the speed c. 
Although there is an internal circulation within the bolus, all fluid particles in the 
trapped bolus move with a mean advance speed equal to c. 

4.3. Quantity of rejluxJlow 

In  order to get a measure of the rate of reflux of material as a proportion of the net 
flow, we use $ as an indicator of material particles, and proceed to calculate the 
time-mean flow in the lab frame between the axis and a particular value of $. 
The instantaneous flow Q@ of all the material between the axis and the co-ordinate 
$ is 

Using the transformations between the two frames and the definition of the 
wave frame stream function -@, and taking the time-mean over the period T ,  
we get 

(42) 

Since the integral is to be evaluated at  constant X, we may substitute dt = ( l /c )  dx 
and perform the integral in the wave frame, Normalizing with respect to ca, and 
introducing the dimensionless variables 7 and 6, we obtain 

(43) 

Fluid Mech. 37 52 
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This has the physical interpretation that the time-mean flow in the laboratory 
frame of the material between the co-ordinates @ = 0 and $ = @ is the sum of 
(a )  the steady flow as seen in the wave frame between these two streamlines and 
( b )  the average flow in one period, if all the material in one wavelength between 
the axis and the wave frame streamline were transported rightwards as a solid 
block with the speed c. 

The integrand of (43) is found by solving (35), a cubic, for 7 as a function of [. 
Except for special limiting cases, the integral has to be determined by numerical 
quadrature. 

Signi$cance of curves of Q$vs. $. Depending upon the values of $ and 8, the 
curves of g,,vs. $ are of four different types. These are shown schematically in 
figure 12, in which both co-ordinates are normalized in terms of their respective 
values a t  the wall. Unity on the vertical scale represents the time-mean flow for 
the whole passage. Curve I represents a case with neither reflux nor trapping. 
Curve I1 represents a case without reflux. However, the part of the curve between 
‘0 ’  and‘a’ represents a trapped bolus, which moves with the wave speed. The 
height of the intersection ‘a’ is the bolus flow expressed as a fraction of the net 
flow. Curve I11 signifies reflux without trapping. Between the origin and point ‘ b I, 
the material advances in the direction of the wave; between ‘b’ and the upper 
terminus of the curve, the material moves in a direction opposite to that of the 
wave. The distance ‘9’ represents the ratio of reflux flow as a fraction of the net 
flow. Curve IV represents a situation with both trapping and reflux. 

Rejlux limit. The combinations of q5 and 8 for which reflux occurs may be 
found analytically by a perturbation expansion about the point (1,l) in figure 12. 
Considering wave frame streamlines very close to the wall, we introduce the  
small parameter 

Then we suppose that the equation of a streamline near the wall, which must of 
course have nearly the shape of the wall, may be expressed as 

(44) € = x-xw = x+(1-$8). 

q(E;  $,a,€) = H+a,(t; $,8)e+a2( t ;  q40)s2+... .  

Introducing this and (44) into (35), and determining the coefficients a,, a2, ..., 
we get 

On applying this to the integral of (43), the result is 

This result shows that the curves of figure 12 all have zero slope a t  (1,l). The 
condition that Q$/& rise above unity, i.e. that reflux occur, is simply $8 < $2, or 

Solution for small amplitudes. The reflux fraction 92 may be determined in 
closed form for small values of #. Restricting the calculations to the pumping 
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range, (15 )  shows that $0 is of order $z or less. Further, ( H -  1 )  is of order $. 
Examination of (35) then suggests that the equation of the streamlines be 
expanded in a power series in the small parameter $: 

rl(k $,&,x) = - x P + b , ( t ;  0 , x ) $ + b , ( t ;  e , X ) p +  ... I. (48) 

Substituting this into (35), and determining the coefficients b,, b,, . . . , we get 

q = - x(1+ $( 1 - &xz) (0 + sin 2 7 4  $ + j [ ( x 2  - 1 )z sin2 2741 q5z + . . .>. (49) 

(Reflux 
fraction) 

1 

$l+w = x l x w  

FIGURE 12. Qualitative curves of the dimensionless time-mean flow &, between the axis, 
and the corresponding value of the wave frame stream function $, plotted against the 
dimensionless value of $. 

When this is used to evaluate the integral of (43), the result is 

Setting (d ldx)  (Q+/ca) = 0,  a maximum for Q+ is found from (50) to occur a t  

x2 = i[l + (40/$)], and the fraction of reflux may then be calculated as 

- 1  = - 1. (51) 
(&+/ca)max 

2 5 4 5  t) $6 _ _ _  
2 + p 0 *  

w =  

52-2 
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to\ u 

4.4. The trapping limit 

Proceeding from (35), it may be shown that x = 0 not only on the axis but also 
on the curve defined bv 

Analysis of this equation shows that the curve is real, cuts the centreline, and 
lies within the tube if 

These are the conditions for which there will exist closed streamlines forming 
a trapped bolus moving a t  the speed of the wave. 
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FIGURE 13. Summary charts for plane case: (a)  trapping limit, reflux limit, and curves 
of constant reflux fraction 9; ( b )  dimensionless reflux flow for the limit 6/B0 = 0. - - -, 
expansion solution up t o  terms in q5z. 

4.5. A graphical summary 
Figure 13 (a )  expresses concisely the results of practical interest for the range 
0 < 6' < B0. Using 4 and 8/8, as co-ordinates, the regimes of reflux and of trapping 
are shown, as well as curves of constant fraction of reflux. For q5 2 0.1, 9 was 
found through numerical integration of (43), using the interpretation of figure 12. 
The dashed curves for constant 93? were calculated from (51), representing the 
expansion solution up to terms of order q52; the agreement is quite good up to 
Q = 0.7. The limit of reflux was calculated from (47). The limit of trapping was 
determined from the lower limit of (53); the upper limit of (53) applies only to 
6' > O,, outside the pumping range. From the limit curve for reflux in figure 13 (a ) ,  
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it  appears that reflux may be quite common in the pumping range, since it occurs 
for values of S/S,  up to about 0.7, with small wave amplitudes, and for values 
of e/e, up to nearly unity, with large wave amplitudes. 

The reflux fraction L%? is quite small when S/S ,  exceeds about half the limit value 
for reflux. When 0/8, is small, on the other hand, say of the order of 0.05 or less, 
9 is 100 % or more. Indeed, as BIB,, -+ 0,  9 -+ m, because the net flow goes to 
zero, while the reflux flow remains finite. Therefore it is useful to know the abso- 
lute magnitude of the reflux flow QR for small values of Ole,. This is plotted in 
figure 13 ( b )  as a function of $ for the limiting case Ole, = 0. The dashed curve, 
representing the expansion solution up to terms of order (p2, is in surprising agree- 
ment even up to $ = 1. Using the value of (&R/ac),,o given by figure 13(b) ,  the 
reflux fraction for very small values of 0/8, may be approximated as 

4.6. Experimental verijcation of reJEux 

A preliminary experiment to test the theoretical prediction of reflux was per- 
formed in the apparatus of figure 6 .  Dyed fluid was injected near the wall with 
B = 0. The dyed fluid was seen to move alternately with and against the wave, 
but with a new displacement per period opposite to that of the wave. The trajec- 
tory was of the same character as the solid curve starting a t  yo = 0.8 in figure 9. 

5. Details of fluid motion (axisymmetric case) 
The concepts and procedures for the axisymmetric case are identical with 

those for the plane case, although the details of calculation are more extensive. 
We summarize here only the principal results. 

5.1. Velocity distributions and the wave frame stream function 

C 

- = 27~- 2--- 1+--  - COS2n([-7), ' 
C h [ na2c ' H 3  ' ( j2n:zc)z3] 

(55) 

where q/na2c is given by (25). The maximum and minimum values of U / c  on the 
axis are shown in figure 14 for 0 = 0 and for 0 = 0,. 

Introducing Stokes's stream function in the wave frame, defined by 

d+ = 2nru dr - 2m-v dx, 

the result is 

+,,,/na2c = q/na2c. 
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5.2. Trapping limit 

A trapped bolus moves with the wave when 

(58) 
(1 - 2 4 )  (2 + 342)  0 ( 1  - 2 4 )  ( 2  + 3$2) 

< - <  
(16 - 42) 42 0 0  (16- #2) 42 * 

The lower limit is shown in figure 15, while the upper limit occurs only for 
0 > a,, i.e. outside the pumping range. 

FIGURE 14. Axisymmetric case. Maximum and minimum values of U / c  on the axis, 
for the two limits 0 = 0 and 0 = 0,. --, @ = 0; - - --, @ = @o. 

5.3. Rejlux limit 

A perturbation calculation such as that used in the plane case leads to  the result 
that reflux occurs whenever O/O, < 1, but not for higher values. That is, reflux 
occurs over the entire pumping range; evidently it is the rule rather than the 
exception. 

5.4. Rejlux fraction for small amplitude 

Again using a power-series expansion in 4, as for the plane case, the reflux fraction 
as q5 + 0 may be calculated as 
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6.5. A graphical summary 

Using q5 as abscissa and O/Oo as ordinate, figure 15 (a )  shows the trapping limit, 
the reflux limit, and curves of constant reflux fraction. As in the plane case, the 
latter required numerical integration. Except when O/Oo > 8 or so, 9 is quite 
large. As @/ao + 0, 9 -+ co. The absolute value of reflux flow is accordingly 
shown in figure 15(b) at this limit. 

0 0.2 04 06 08 1.0 

9 
(a )  

0 0.2 04 06 08 1.0 

c 
( b )  

FIGURE 15. Summary charts for axisymmetric case: (a )  trapping limit, reflux limit, and 
curves of constant reflux fraction 22 (the domain of trapping is shown only for @/@, < I) ; 
( b )  dimensionless reflux flow for the limit @/@, = 0. - - - -, expansion solution up 
to terms in $2. 
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Appendix A 
Of the several different Reynolds numbers, R, that might be defined, it is not 

immediately obvious which best serves as a measure of the relative ratio of 
inertial to viscous forces. For flows in which inertial effects are relatively weak 
(the case where one seeks the limits of the inertia-free solution), the appropriate 
R may be found by calculating a posteriori the inertial and viscous terms of the 
inertia-free solution, treating the latter as the zeroth-order solution pertaining 
to R = 0. 

In  the two-dimensional case, 
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is readily found from (3)) (32) and (34) to have the following value on the axis: 

7~ ac ($0- I )  (3$0- 2 + +  sin 2776) cos 27~5 
2 v h  6 + sin 2776 

R = - - -  

Since both 0 and $0 lie in the range between zero and unity, the R appropriately 
characterizing flows with small inertial effects is R = (aclv) (ulh). 
The same result can be shown to be correct in the axisymmetric case. 

Appendix B 
The full Navier-Stokes equations for the plane case, expressed in wave frame 

co-ordinates, and in terms of the wave frame stream function, are reducible to 

$uvz$x - $hxvz$hy = v V V $ :  (B 1) 

see Schlichting (1968, p. 69). All the physical quantities of (B 1) can be brought 
approximately to the scale of unity through the introduction of the following 
dimensionless variables : 

6 = x/h, 7 = yla, x = $lac, 

P = u/h, R = (ac1v)P. 

Expressed in these variables, (B 1) becomes 

R[Xq(XqqS +P"& - X f ( X q q q  + P2xqg)l = Xqqqq + 2 P X q q g  f P4xgg- (B 2) 

Thus the two parameters /3 and R govern the problem: the solution may be 
expressed as power-series expansions in them, if they are small compared with 
unity. For the zeroth-order term of the series, (B 2 )  yields 

X ~ ~ V l  = O- (B 3) 

Although this corresponds to P < 1 and R < 1 , (B 3) remains valid even for quite 
high values of R = aclv, provided that the wave-number /3 is sufficiently small. 
Now, the boundary conditions for (B 3) were: 

x = 0, x,,, = 0 at 7 = 0; 

x = - 1 ,  x =  qlac at = H .  0 

Using these, the solution obtained is precisely that given by (35). 
A similar analysis may be made for the axisymmetric case. 
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